400 Chernobyls: Solar Flares, EMP, and Nuclear Armageddon

Matthew Stein

There are nearly 450 nuclear reactors in the world, with hundreds more either under construction or in the planning stages. There are 104 of these reactors in the USA and 195 in Europe. Imagine what havoc it would wreak on our civilization and the planet’s ecosystems if we were to suddenly witness not just one or two nuclear melt-downs but 400 or more! How likely is it that our world might experience an event that could ultimately cause hundreds of reactors to fail and melt down at approximately the same time?  I venture to say that, unless we take significant protective measures, this apocalyptic scenario is not only possible but probable.

Consider the ongoing problems caused by three reactor core meltdowns, explosions, and breached containment vessels at Japan’s Fukushima Daiichi facility, and the subsequent health and environmental issues. Consider the millions of innocent victims that have already died or continue to suffer from horrific radiation-related health problems (“Chernobyl AIDS”, epidemic cancers, chronic fatigue, etc) resulting from the Chernobyl reactor explosions, fires, and fallout. If just two serious nuclear disasters, spaced 25 years apart, could cause such horrendous environmental catastrophes,  it is hard to imagine how we could ever hope to recover from hundreds of similar nuclear incidents occurring simultaneously across the planet. Since more than one third of all Americans live within 50 miles of a nuclear power plant, this is a serious issue that should be given top priority![1]

Figure 1. Coronal Mass Ejection (CME), SOHO image, June 9, 2002.


In the past 152 years, Earth has been struck roughly 100 solar storms causing significant geomagnetic disturbances (GMD), two of which were powerful enough to rank as “extreme GMDs”. If an extreme GMD of such magnitude were to occur today, in all likelihood it would initiate a chain of events leading to catastrophic failures at the vast majority of our world’s nuclear reactors, quite similar to the disasters at both Chernobyl and Fukushima, but multiplied over 100 times. When massive solar flares launch a huge mass of highly charged plasma (a coronal mass ejection, or CME) directly towards Earth, colliding with our planet’s outer atmosphere and magnetosphere, the result is a significant geomagnetic disturbance.

Since an extreme GMD of such a potentially disruptive magnitude that it would collapse the grid across most of the US last occurred in May of 1921, long before the advent of  modern electronics, widespread electric power grids, and nuclear power plants, we are for the most part blissfully unaware of this threat and totally unprepared for its consequences. The good news is that there are some relatively affordable protective equipment and processes which could be installed to protect critical components in the electric power grid and its nuclear reactors, thereby protecting our civilization from this “end-of-the-world-as-we-know-it” scenario. The bad news is that, as of now, even though panels of scientists and engineers have studied the problem, and the bi-partisan congressional EMP commission has presented a list of specific recommendations to congress, our leaders have yet to approve and implement a single significant preventative measure!

Most of us believe something like this could never happen, and if it could, certainly our “authorities” would do everything in their power to make sure they would prevent such an Apocalypse from ever taking place. Unfortunately, the opposite is true. “How could this happen?” you might ask. “Is this truly possible?” Read and weep, for you will soon know the answer.

Nuclear Power Plants and the Electric Power Grid

Our global system of electrical power generation and distribution (“the grid”), upon which every facet of our modern life is utterly dependent, in its current form is extremely vulnerable to severe geomagnetic storms of a magnitude that tends to strike our planet on an average of approximately once every 70 to 100 years. We depend on this grid to maintain food production and distribution, telecommunications, Internet services, medical services, military defense, transportation, government, water treatment, sewage and garbage removal, refrigeration, oil refining and gas pumping, and to conduct all forms of commerce.

Unfortunately, the world’s nuclear power plants, as they are currently designed, are critically dependent upon maintaining connection to a functioning electrical grid, for all but relatively short periods of electrical blackouts, in order to keep their reactor cores continuously cooled so as to avoid catastrophic reactor core meltdowns and spent fuel rod storage pond fires.

If an extreme GMD were to cause widespread grid collapse (which it most certainly will), in as little as one or two hours after each nuclear reactor facility’s backup generators either fail to start, or run out of fuel, the reactor cores will start to melt down. After a few days without electricity to run the cooling system pumps, the water bath covering the spent fuel rods stored in “spent fuel ponds” will boil away, allowing the stored fuel rods to melt down and burn [2]. Since the Nuclear Regulatory Commission (NRC) currently mandates that only one week’s supply of backup generator fuel needs to be stored at each reactor site, it is likely that after we witness the spectacular night-time celestial light show from the next extreme GMD we will have about one week in which to prepare ourselves for Armageddon.

To do nothing is to behave like ostriches with our heads in the sand, blindly believing that “everything will be okay,” as our world inexorably drifts towards the next naturally recurring, 100%  inevitable, super solar storm and resultant extreme GMD. The result of which in short order will end the industrialized world as we know it, incurring almost incalculable suffering, death, and environmental destruction on a scale not seen since the extinction of the dinosaurs some 65 million years ago.

The  End of “The Grid” As We Know It

There are records from the 1850s to today of roughly one hundred significant geomagnetic solar storms, two of which in the last 25 years were strong enough to cause millions of dollars worth of damage to key components that keep our modern grid powered. In March of 1989, a severe solar storm induced powerful electric currents in grid wiring that fried a main power transformer in the HydroQuebec system, causing a cascading grid failure that knocked out power to 6 million customers for nine hours while also damaging similar transformers in New Jersey and the United Kingdom. More recently, in 2003 a solar storm of lesser intensity, but longer duration, caused a blackout in Sweden and induced powerful currents in the South African grid that severely damaged or destroyed fourteen of their major power transformers, impairing commerce and comfort over major portions of that country as they were forced to resort to massive rolling blackouts that dragged on for many months[3].

Read entire article HERE.

Leave a Reply

Your email address will not be published. Required fields are marked *